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Abstract— in this paper, the dynamic characteristics and nonlinear behavior for resonant vibratory micro-electro-mechanical gyroscopes system 
(MEMS) are studied. The MEMS gyroscopes system described by nonlinear differential equations including linear terms with external excitation force. 
The multiple scale perturbation technique (MSPT) is applied to derive the approximate mathematical solutions of the governing equations up to the se-
cond order approximation. The different worst resonance cases is reported and studied numerically using Runge-Kutta of fourth order. We applied both 
frequency response equations and phase-plane technique to analyze the stability of the steady state solution of vibrating system. Numerical simulations 
are presented to verify the effectiveness of the different parameters on the micro electro-mechanical gyroscopes system using MATLAB and MAPLE 
programs. Results are compared to previously published work. 
 

Index Terms— Micro-Electro-Mechanical System (MEMS) gyroscopes, Stability, Resonance, Vbrations. 

——————————      —————————— 

1 INTRODUCTION                                                                     
icro electro-mechanical systems (MEMS) are increasing-
ly being used in measurement and control problems 

due to their small size, low cost, and low power consumption. 
The vibrating gyroscope is a MEMS device that will have a 
significant impact on stability control systems in the transpor-
tation industry. The vibrating gyroscope is one of the MEMS 
devices that commonly used for measuring angular velocity. 
MEMS gyroscopes are widely applied in the area of aviation, 
navigation, automotive, biomedicine, military affairs, and con-
sumer electronics. The performance of the MEMS gyroscopes 
is deteriorated by the effects of time varying parameters, envi-
ronment variations, quadrature errors, and external disturb-
ances. Therefore, advanced control such as adaptive control, 
sliding mode control, and intelligent control are necessary to 
be used to control the MEMS gyroscope and improve its per-
formance and stability. Engineering researchers have paid 
much attention to studying the non-linear dynamics, bifurca-
tions, chaos and stability of the vibrate MEMS gyroscopes.  
There are two main ways to control this vibration the active  
and passive control. Egretzberger et al. [1] proposed the         

 
 

design of open and closed-loop controllers for vibratory 
MEMS gyroscopes models. Braghin et al. [2] investigated that 
the resonance peak of the structure bends towards the higher 
frequencies when the nonlinear hardening characteristic of the 
supporting beams becomes visible. This property is useful to 
easily sense and drive resonances thus increasing the sensibil-
ity of the MEMS gyroscope. A parametrically amplified 
MEMS rate gyroscope were studied by Hu et al. [3] and the 
response of the controller was investigated experimentally 
and demonstrated stable amplification in the presence of step 
changes in the input. Yoon et al. [4] presented that the vibra-
tion effects on MEMS degenerate gyroscopes by vibratory ring 
gyroscopes. Riaz et al. [5] investigated that a 3-DOF non-
resonant micro gyroscope design concept with structurally 
decoupled 2-DOF drive-mode and 1-DOF sense-mode oscilla-
tor. A dynamic amplification of 3 times at first resonant fre-
quency was achieved by the passive mass and 9 times at se-
cond resonant frequency in comparison with the active mass. 
Fei and Xin [6] proposed an adaptive fuzzy sliding mode con-
trol (AFSMC) for Micro-Electro-Mechanical Systems (MEMS) 
triaxial gyroscope with angular velocity. Sung et al. [7–9] pro-
vided resonance in both modes through phase-locked loop 
(PLL) control of MEMS vibratory gyroscope. Asokanthan and 
Wang [10] investigated the nonlinear instabilities in a single-
axis vibrating MEMS gyroscope and studied the bifurcation 
behavior associated with the steady state. The method of aver-
aging employed to solve coupled differential equations. Pak-
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niyat et al. [11] studied the stability and the effects of different 
parameters of a parametrically resonated MEMS gyroscope 
with harmonic excitation. Suketu Naik et al. [12] they showed 
that the multiple bifurcations depending on the interaction 
between damping constant, excitation amplitude and excita-
tion frequency for the coupled of Micro electromechanical Sys-
tems. The coupled system showed phase-locked behavior and 
full entrainment to the excitation force at a higher value of the 
excitation amplitude. They reported that the coupled system 
can be used as a sensor depending on the target application. 
Mrigank Sharma et al. [13] they studied the sensing mode of a 
MEMS gyroscope with parametric amplification and damping. 
They amplified the mechanical oscillations or reduced the 
unwanted oscillations by controlling the phase difference be-
tween the excitation and the parametric actuation. Experi-
ments confirmed that parametric modulation through electro-
mechanical coupling leads to both an increase in spectral se-
lectivity and a reduction of the equivalent input noise angular 
rate for a parametric gain. Juntao Fei et al. [14] developed a 
fuzzy logic-based adaptive sliding mode controller and adap-
tive fuzzy sliding mode controller with bound estimation to 
control the trajectory of an angular velocity sensor and relax 
the requirement for the bound value in the sliding control. The 
stability of the closed-loop system can be guaranteed with the 
proposed adaptive fuzzy control strategy with bound estima-
tion. Simulations are implemented to verify the effectiveness 
of the proposed adaptive fuzzy control and demonstrate that 
the proposed adaptive fuzzy control system with bound esti-
mation yields superior control performance.  Kamel and 
Hamed [15] studied the nonlinear behavior of an inclined ca-
ble subjected to harmonic excitation near the simultaneous 
primary and 1:1 internal resonance using multiple scale meth-
od. Hamed et al. [16-18] showed how effective is the passive 
vibration control reduction at resonance under multi-external 
or both multi-external and multi-parametric and both multi-
external and tuned excitation forces. They reported that the 
advantages of using multi-tools are to machine different mate-
rials and different shapes at the same time. This leads to sav-
ing the time and higher machining efficiency. Hamed et al. 
[19] presented the behavior of the nonlinear string beam cou-
pled system subjected to external, parametric and tuned exci-
tations for case 1:1 internal resonance. The stability of the sys-
tem studied using frequency response equations and phase-
plane method. It is found from numerical simulations that there are 
obvious jumping phenomena in the frequency response curves. 
Sayed and Hamed [20] studied the numerical response and 
stability analyses of a two-degree-of-freedom system under 
harmonic and parametric excitation forces. They obtained the 
approximate solutions up to and                 
 

 including the second-order approximations using the method 
of multiple scale perturbation technique. Sayed and Kamel 
[21, 22] investigated the influence of different controllers on 
the vibration control system. They reported that, the satura-
tion of non-linear vibration absorbers is used to reduce and 
control the movement due to rotor blade flapping.  Amer and 
El-Sayed [23] investigated the nonlinear dynamics of a two-
degree-of freedom vibration system with absorber when sub-
jected to multi external forces at primary and internal reso-
nance with ratio 1:3. They reported that the steady-state am-
plitude of the main system is reduced to 2.5% of its maximum 
value.  Kamel, Eissa and EL-Sayed et al.  [24-28] obtained the 
results of effectiveness of the transverse or the longitudinal or 
both non-linear controllers on vibration of the ship roll system 
with multi-external or multi-parametric or both multi-
parametric and multi external excitation. They introduced a 
study on the stability and effect of parameters on the vibration 
of spring pendulum system and controllers. Sayed and Mousa 
[29] investigated the influence of the quadratic and cubic 
terms on non-linear dynamic characteristics of the angle-ply 
composite laminated rectangular plate with parametric and 
external excitations. The method of multiple time scale pertur-
bation is applied to solve the non-linear differential equations 
describing the system up to and including the second-order 
approximation. Two cases of the sub-harmonic resonances 
cases ( 2 12Ω ≅ ω and  2 22Ω ≅ ω ) in the presence of 1:2 internal 

resonance 2 12ω ≅ ω   are considered. The stability of the sys-
tem is investigated using both frequency response equations 
and phase-plane method. It is quite clear that some of the sim-
ultaneous resonance cases are undesirable in the design of 
such system as they represent some of the worst behavior of 
the system. Such cases should be avoided as working condi-
tions for the system. Sayed and Mousa [30] studied an analyti-
cal investigation of the nonlinear vibration of a symmetric 
cross-ply composite laminated piezoelectric rectangular plate 
under parametric and external excitations. Their study fo-
cused on the case of 1:1:3 primary resonances and internal 
resonance, and they verified the analytical results calculated 
by the method of multiple time scale by comparing them with 
the numerical results of the modal equations. The obtained 
results were verified by comparing the results of the finite dif-
ference method (FDM) and Runge-Kutta (RKM) method.   
Kamel et al. [31] studied a model subject to multi-external ex-
citation forces. The model is represented by two-degree-of-
freedom system consisting of the main system and absorber 
simulating ultrasonic machining. They used the passive vibra-
tion controller to suppress the vibration behavior of the sys-
tem. Mousa et al. [32] investigate the stability of a simply sup-
ported laminated composite piezoelectric rectangular plate 
under combined excitations. The analytical results are verified 
by comparing them with those of numerical integration of the 
modal equations. The influence of different parameters on the 
dynamic behavior of the composite laminated piezoelectric 
rectangular plate is studied. Variation of the some parameters 
leads to multivalued amplitudes and hence to jump phenom-
ena.   

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014                                                                                                   752 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

2.  MATHEMATICAL MODELING 
The non-dimensional equation of motion described the MEMS 

gyroscope system can be given by [14] 
2

1 2 1 1 1sinx x y x y f t y+α +α +ω +β = Ω + γ                 (1) 

2
2 3 2 2 2siny x y x y f t x+α +α +β +ω = Ω − γ                (2) 

where x and y  are the co-ordinates of the proof mass with 

respect to the gyro frame in a Cartesian co-ordinate system; 

1α  and 3α  are damping; 2 ,α β  called quadrature errors, are 

coupled damping and spring terms, respectively, mainly due 

to the asymmetries in suspension structure and misalignment 

of sensors and actuators.  The coupled spring and damping 

terms are unknown, but can be assumed to be small. The no-

mial values of the x and y  axes spring and damping terms 

are known, but there are small unknown variations; 1ω  and 

2ω  the linear natural frequencies, and ΩR1R, ΩR2R the excitations 

frequencies, 1 2,f f  are the amplitudes of external excitation 

forces, yγ  and xγ   are the Coriolis forces. 

The linear viscous damping forces, quadrature errors and ex-

citing forces are assumed to be 

1 1 2 2
ˆ ˆˆˆ , , , 1, 2,3n n f f f f nα = εα β = εβ = ε = ε =        (3) 

where ε  is a small perturbation parameter and  

0 1.< ε <<  The behavior of such a system can be very 

complex, especially when the natural frequencies and the forc-

ing frequency satisfy certain internal and external resonance 

conditions. The primary resonances case 1 1Ω ≅ ω  in the pres-

ence of 1:1 internal resonance 2 1ω ≅ ω  is considered. To de-

scribe how close the frequencies are to the resonance condi-

tions we introduce detuning parameters:  

1 1 1 1 1ˆΩ = ω +σ = ω + εσ ,   2 1 2 1 2ˆω = ω +σ = ω + εσ           (4) 

where 1σ and 2σ  are called the external and internal detun-

ing parameters, respectively. The parameters  1 2
ˆ ˆˆˆ , , ,n f fα β  

and the detuning parameters 1σ̂ and 2σ̂ are of order 1.  We 

determine a first-order approximation for the system response 

by the method of multiple scales [33-34], which is a powerful 

tool in determining periodic solutions of small amplitude.  

Equation (1)-(2) rewritten in the form: 

2
1 2 1 1 1

ˆˆˆ ˆ ˆsinx x y x y f t y+ εα + εα +ω + εβ = ε Ω + ε γ        (5) 

2
2 3 2 2 2

ˆˆˆ ˆ ˆsiny x y x y f t x+ εα + εα + εβ +ω = ε Ω −ε γ          (6) 

     The approximate solution of Eqs. (5)-(6) can be obtained by 

using the method of multiple scales [33-34]. Let 

0 0 1 1 0 1( ; ) ( , ) ( , )x t x T T x T Tε = + ε                              (7) 

0 0 1 1 0 1( ; ) ( , ) ( , )y t y T T y T Tε = + ε                             (8) 

where, n
nT t= ε  (n = 0, 1) are the fast and slow time scales re-

spectively.  In terms of 0T  and 1T , the time derivatives transform 

according to  

0 1
d D D
dt

≡ + ε   ,     
2

2
0 0 12 2d D D D

dt
≡ + ε                    (9)  

where n nD T= ∂ ∂ .  Substituting Eqs.R R(7)-(9) into Eqs.R R(5)-(6) 

and equating coefficients of similar powers of ε, one obtains: 

Order 0( )ε : 

2 2
0 1 0( ) 0D xω+ =                                                                 (10) 

 2 2
0 2 0( ) 0D yω+ =                                                                 (11)        

Order 1( )ε : 

2 2
0 1 1 0 1 10 1 0 0 2 0 0 0

ˆˆ ˆ( ) 2D x D D x D x D y yω+ = − −α −α −β         

        0 0 1 1
ˆˆ sinD y f t+γ + Ω                                       (12) 

2 2
0 2 1 0 1 20 2 0 0 3 0 0 0

ˆˆ ˆ( ) 2D y D D x D x D y xω+ = − −α −α −β   

   0 0 2 2
ˆˆ sinD x f t−γ + Ω                                    (13) 

The solution of Eqs.R R(10)-(11) can be expressed in the complex 

form: 

0 1 0exp( )x A i T cc= ω +                                                    (14) 

0 2 0exp( )y B i T cc= ω +                                                       (15) 

where A  and B are a complex function in 1T and cc stands 

for the complex conjugate of the preceding terms. Substituting 

Eqs. (14)-(15) into Eqs. (12)-(13) and using the resonance condi-

tions Eq. (4) lead to secular terms. Eliminating these secular 
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terms leads to the solvability conditions for the first-order ex-

pansion: 

1 1 1 1 2 2 2 2 1
ˆˆ ˆ ˆ2 ( ) exp( )i D A i A i i B i Tω = − α ω − α ω +β− γω σ

  1
1 1

ˆ
exp( )

2
f i T
i

+ σ                             (16)                                  

2 1 3 2 2 1 1 2 1
ˆˆ ˆ ˆ2 ( ) exp( )i D B i B i i A i Tω = − α ω − α ω +β+ γω − σ   

                                 (17)   

For the first order approximations, we get: 

1 1 1 2 2 12 2 , 2 2dA d Bi i D A i i D B
d t d t

ω = ε ω ω = ε ω      (18) 

To analyze the solutions of Eqs. (16)-(17), we express ,A B  in the 

polar form  

        1 2
1 1
2 2

,i iA ae B b eϕ ϕ= =    ,                             (19) 

where ,a b  and 1 2,ϕ ϕ are the steady state amplitudes and 

phases of the motion respectively. Substituting Eqs. (16)-(17) 

and (19) into Eq. (18) and equating the real and imaginary 

parts we obtain the following equations describing the modu-

lation of the amplitudes and phases of the response: 

1 2 2 1
1 1 2

1 1 1

( )sin cos cos
2 2 2 2

fa a b bα α − γ ωβ
= − − θ − θ − θ

ω ω ω
   (20) 

2 2 1
1 1 1 2

1 1 1

( )cos sin sin
2 2 2

fa b bα − γ ωβ
ϕ = θ − θ − θ

ω ω ω
        (21)     

3 2 1
1 1

2 2

( )sin cos
2 2 2

b b a aα α + γ ωβ
= − + θ − θ

ω ω
                      (22) 

2 1
2 1 1

2 2

( )cos sin
2 2

b a aα + γ ωβ
ϕ = θ + θ

ω ω
                                (23) 

where  

1 2 1 2 1ˆ Tθ = σ +ϕ −ϕ ,  2 1 1 1ˆ Tθ = σ −ϕ                        (24) 

the averaging equations (20)-(23)  becomes 

1 2 2 1
1 1 2

1 1 1

( )sin cos cos
2 2 2 2

fa a b bα α − γ ωβ
= − − θ − θ − θ

ω ω ω
     (25) 

2 2 1
1 1 1 2

1 1 1

( )cos sin sin
2 2 2

fa b bα − γ ωβ
ϕ = θ − θ − θ

ω ω ω
             (26) 

3 2 1
1 1

2 2

( )sin cos
2 2 2

b a a aα α + γ ωβ
= − + θ − θ

ω ω
                        (27) 

2 1
2 1 1

2 2

( )cos sin
2 2

b a aα + γ ωβ
ϕ = θ + θ

ω ω
                                   (28) 

Hence, the fixed points of Eqs. (25)-(28) are given by 

1 2 2 1
1 1 2

1 1 1

( )sin cos cos 0
2 2 2 2

fa b bα α − γ ωβ
+ θ + θ + θ =

ω ω ω
         (29) 

2 2 1
1 1 1 2

1 1 1

( )cos sin sin 0
2 2 2

fa b bα − γ ωβ
σ − θ + θ + θ =

ω ω ω
        (30) 

3 2 1
1 1

2 2

( )sin cos 0
2 2 2

b a aα α + γ ωβ
− θ + θ =

ω ω
                      (31) 

2 1
1 2 1 1

2 2

( )( ) cos sin 0
2 2

b a aα + γ ωβ
σ −σ − θ − θ =

ω ω
              (32) 

There are three possibilities. 

 First case, 0 , 0a b= = ; this is trivial solution. 

Second case, 0 , 0a b≠ = ; in this case the frequency response 

equation is given by 
2 2

2 2 21 1
1 2

1

0
4 4

fa aα
σ + − =

ω
                                                       (33) 

Third case, 0 , 0a b≠ ≠ ; this is the practical case, in this case 

the frequency response equations are given by 

2 2 2 22
2 2 2 2 21 1 2 2 2 2 1
1 2 2 2 2

1 1 1 1

( ) ( ) 0
4 4 4 4 4

f fa a b b bα α − γ ω α − γ ωβ
σ + − − − − =

ω ω ω ω
                      

(34) 
2 2 22

2 2 2 2 23 2 1
1 2 2 2

2 2

( )( ) 0
4 4 4

b b a aα α + γ ωβ
σ −σ + − − =

ω ω
         (35) 

4. RESULTS AND DISCUSSIONS 
 
The two-degree-of-freedom micro-electro-mechanical gyro-
scopes system (MEMS) under external excitations is studied. 
The solution of this system is determined up to the second 
order approximation using the multiple time scale perturba-
tion. To study the behavior of the system of Eqs. (1)-(2), the 
Runge-Kutta of fourth order method was applied to determine 
the numerical solution of the given system. Fig. 2 illustrates 
the response for the non-resonant system where ΩR1R≠ ΩR2R ≠ ωR1R≠ 
ωR2  Rat some values of the equation parameters . It is observed 
from this figure, the oscillation of the two modes of freedom 
micro-electro-mechanical gyroscopes system becomes stable 
and the steady state amplitudes x and y are about 0.0006 and 
0.0008 respectively and the phase plane shows limit cycle, de-
noting that the system is free from chaos.  
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Fig. 2 Non-resonance system behavior (basic case) 

α1= 0.01, α2= 0.002, α3= 0.01, β= 0.1, γ= 0.04, f1 = 0.2, f2 = 0.5,         
(Ω1≠ Ω2 ≠ ω1≠ ω2) 

 
Fig. 3 shows that the time response of the simultaneous pri-
maryand internal resonance case where (Ω1 ≅ ω1, Ω2 ≅ ω2, ω1  
≅ ω2), which is one of the worst resonance cases. It is observed 
from this figure that the oscillation responses of the two 
modes of micro-electro-mechanical gyroscopes system start 
with increasing amplitude with tuned oscillations and the os-
cillations of the two modes becomes stable. From this figure 
we have that the amplitudes of the first and second modes 
system are increased to about 600% and 180% of the maxi-
mum amplitude f2 respectively and the phase plane shows 
limit cycle. 

 

 

 
Fig. 3. Simultaneous primary and internal resonance case      

α1= 0.01, α2= 0.002, α3= 0.01, β= 0.1, γ= 0.04, f1 = 0.2, f2 = 0.5,         
(Ω1 ≅ ω1, Ω2 ≅ ω2, ω1 ≅ ω2), 

4.1. RESPONSE CURVES AND EFFECTS OF DIFFERENT 
PARAMETERS 

 
  In this section, the steady state response of the given system at 
various parameters near the simultaneous primary and inter-
nal resonance case is investigated and studied. The frequency 
response equations given by Eqs. (34)-(35) are solved numeri-
cally at the same values of the parameters shown in Fig. 3. 
Fig. 4a, show the steady state amplitudes of the first mode of 
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micro-electro-mechanical gyroscopes system against the de-
tuning parameters σ1.  
Figs. 4 (b, f) show that the steady state amplitude of the first 
mode micro-electro-mechanical gyroscopes system is a mono-
tonic decreasing function in the linear damping coefficient α1  
and the natural frequencies ω1, ω2 .  Figs. 4 (c, d, e, g) show 
that the steady state amplitude of the first mode micro-electro-
mechanical gyroscopes system is a monotonic increasing func-
tion in the linear damping coefficient α2 and the nonlinear 
parameters γ, β and the excitation force amplitude f1.   

Fig.4a. Effects of the detuning parameter 1σ  

 
Fig.4b. Effects of the damping coefficient α1  

 

Fig.4c. Effects of damping coefficient α2  

 
Fig.4d. Effects of the nonlinear parameter β 

 
Fig.4e. Effects of the nonlinear parameter γ 

 

 
Fig.4f. Effects of the natural frequencies ω1, ω2 
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Fig.4g. Effects of the excitation amplitude f1 

 

Fig. 5a, show the steady state amplitudes of the second mode 
of mode micro-electro-mechanical gyroscopes system against 
the detuning parameters σ2.  
Figs. 5 (c, f) show that the steady state amplitude of the second 
mode micro-electro-mechanical gyroscopes system is a mono-
tonic decreasing function in the linear damping coefficient α3  
and the natural frequencies ω1, ω2.  Figs. 5 (b, d, e) show that 
the steady state amplitude of the second mode micro-electro-
mechanical gyroscopes system is a monotonic increasing func-
tion in the linear damping coefficient α2 and the nonlinear 
parameters γ and β.   
 

 
Fig.5a. Effects of the detuning parameter 2σ  

 
Fig.5b. Effects of damping coefficient α2 

 
Fig.5c. Effects of damping coefficient α3 

 
Fig.5d. Effects of the nonlinear parameter β 
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Fig.5e. Effects of the detuning parameter γ  

 
Fig.5f. Effects of the natural frequencies ω1, ω2 

5. COMPARISON STUDY 
 
In the previous work [14], studied the system of the micro-
electro-mechanical gyroscopes system when subjected to ex-
ternal excitation forces. In our study, the response and stabil-
ity of the system of two-degree-of freedom under to external 
excitation forces are investigated using the multiple time scale 
method. All possible resonance cases are extracted and inves-
tigated. The case of simultaneous principle primary resonance 
in the presence of 1:1 internal resonances is considered. The 
stability of the system is investigated using both frequency 
response equations and phase-plane method. It is quite clear 
that some of the simultaneous resonance cases are undesirable 
in the design of such system as they represent some of the 
worst behavior of the system.   

5. CONCLUSIONS 
 
The nonlinear responses of the micro-electro-mechanical gyro-
scopes system (MEMS) subjected to external excitations have 
been studied. The problem is described by a two-degree-of-
freedom system of nonlinear ordinary differential equations. 

The case of simultaneous primary resonance in the presence of 
one-to-one internal resonance is studied by applying multiple 
time scale perturbation method. Both the frequency response 
equations and the phase-plane technique are applied to study 
the stability of the system. The effect of the different parame-
ters of the system is studied numerically. From the above 
study the following may be concluded: 

1- The simultaneous primaryand internal resonance case 
where (Ω1 ≅ ω1, Ω2 ≅ ω2, ω1 ≅ ω2) is the worst cases 
and it should be avoided in design.  

2- The amplitudes of the first and second modes system 
are increased to about 600% and 180% of the maxi-
mum amplitude f2 respectively and the phase plane 
shows limit cycle. 

3- The steady state amplitude of the micro-electro-
mechanical gyroscopes system is a monotonic de-
creasing function in the linear damping coefficients 
α1, α3 and the natural frequencies ω1, ω2.   

4- The steady state amplitude of the micro-electro-
mechanical gyroscopes system is a monotonic increas-
ing function in the linear damping coefficient α2 and 
the nonlinear parameters  γ , β and the excitation force 
amplitude f1.  
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